domingo, 31 de agosto de 2014

 -∞ , + 

Σi [aipP+ bipP + ci pP+ dipP ......]

i = abcd [n]








 -∞ , + 

Σi [ai+ bi + ci + di ......]

i = abcd [n]









 -∞ , + 

Σi [aiLOGX/X[n]+ biLOGX/X[n + ci LOGX/X[n+ di LOGX/X[n......]

i = abcd [n]









 -∞ , + 

Σi [aipP+ bipP + ci pP+ dipP ......]

i = abcd [n]








 -∞ , + 

Σi [ai+ bi + ci + di ......]

i = abcd [n]










 -∞ , + 

Σi [aiLOGX/X[n]+ biLOGX/X[n + ci LOGX/X[n+ di LOGX/X[n......]

i = abcd [n]

sábado, 30 de agosto de 2014

N = LOGX/X[n] pP

Σi [aipP+ bipP + ci pP+ dipP ......]

i = abcd [n]




n= LOGX/X[n]pP

Σi [ai+ bi + ci + di ......]

i = abcd [n]




i =LOGX/X[n]pP

Σi [aiLOGX/X[n]+ biLOGX/X[n + ci LOGX/X[n+ di LOGX/X[n......]

i = abcd [n]


pP =n

Σi [aipP+ bipP + ci pP+ dipP ......]

i = abcd [n]




n= pP

Σi [ai+ bi + ci + di ......]

i = abcd [n]




i =pP

Σi [aiLOGX/X[n]+ biLOGX/X[n + ci LOGX/X[n+ di LOGX/X[n......]

i = abcd [n]




sistema Graceli.de geometria n-dimensional.



  f(x)=a\cdot e^{- \frac{(x-b)^2}{2c^2}} /  [ - log x / x * Φ \lambda / [a, θ tr cv cx ]  / t [n..]




                                   [ - log x / x * Φ \lambda / [a, θ tr cv cx ]  / t [n..]
\, \log ( r / R ) = \theta \cot \alpha




                                  
\, \log ( r / R ) = \theta \cot \alpha  / [ - log x / x * Φ \lambda / [a, θ tr cv cx ]  / t [n..]




   

r = \frac {a (1 - e^2)} {1 + e \cos \theta},    /      [ - log x / x * Φ \lambda / [a, θ tr cv cx ]  / t [n..]



sistema Graceli.de geometria n-dimensional.


                                   [ - log x / x * Φ \lambda / [a, θ tr cv cx ]  / t [n..]
 f(x)=a\cdot e^{- \frac{(x-b)^2}{2c^2}}


Φ \lambda = fluxos de ondas transversais ao plano de curvas, elipse, e espirais.

[a, θ tr cv cx ]  / t = alternância de ângulo transversal côncavo e convexo conforme as ondas transversais, ou seja, de latitude, longitude, altura e tempo. 



                                   [ - log x / x * Φ \lambda / θ / t [n..]
 f(x)=a\cdot e^{- \frac{(x-b)^2}{2c^2}}

sexta-feira, 29 de agosto de 2014


i =n

Σi [aipP+ bipP + ci pP+ dipP ......]

i = abcd [n]




i =n

Σi [ai+ bi + ci + di ......]

i = abcd [n]




i =n

Σi [aiLOGX/X[n]+ biLOGX/X[n + ci LOGX/X[n+ di LOGX/X[n......]

i = abcd [n]




i =logx/xn

Σi-1[ logx/x [n] pP 

i -1[ logx/x [n]]






i =logx/xn

Σi-1pP[ logx/x [n] / pP 

i -1[ logx/x [n]]





i =logx/xn

Σi-1pP[ logx/x [n] pP * [a,R,0, pP]

i -1[ logx/x [n]]







i =logx/xn

Σi-1pP[ logx/x [n] pP 

i -1[ logx/x [n]]




i =logx/xn

Σi-ipP

i - n






i =logx/xn

Σi-1[ai+ai] * [ logx/x [n] pP 

i -1[ logx/x [n]]






i =logx/xn

Σi-1pP / [ logx/x [n] pP 

i -1[ logx/x [n]]




i =logx/xn

Σi-1pP[ logx/x [n] pP * [a,R,0, pP]

i -1[ logx/x [n]]




i =n

Σi-ipP [logx / x [n]

i - x






i =logx/xn

Σi-1[ logx/x [n] pP 

i -1[ logx/x [n]]






i =logx/xn

Σi-1pP[ logx/x [n] pP 

i -1[ logx/x [n]]




i =logx/xn

Σi-1pP[ logx/x [n] pP * [a,R,0, pP]

i -1[ logx/x [n]]





i =logx/xn

Σi-1[ logx/x [n] pP 

i -1[ logx/x [n]]






i =logx/xn

Σi-1pP[ logx/x [n] pP 

i -1[ logx/x [n]]




i =logx/xn

Σi-ipP

i - n





i =logx/xn

Σi-1[ logx/x [n] pP 

i -1[ logx/x [n]]






i =logx/xn

Σi-1pP[ logx/x [n] pP 

i -1[ logx/x [n]]




i =logx/xn

Σi-1pP[ logx/x [n] pP * [a,R,0, pP]

i -1[ logx/x [n]]





i =logx/xn

Σi-1[ logx/x [n] pP 

i -1[ logx/x [n]]






i =logx/xn

Σi-1pP[ logx/x [n] pP 

i -1[ logx/x [n]]




i =n

Σi-ipP [logx / x [n]

i - x




i =n

Σi [ai+ bi + ci + di ......]

i = abcd [n]





           

i =n

Σi [ i + [a, R,0,pP]

i = R [n]

R = REAIS.

[a, R,0,pP] = ALTERNÂNCIA ENTRE NÚMEROS REAIS, ZERO, 

PROGRESSÃO SOBRE PROGRESSÃO.

.


i =n

Σ  i / [ i + [a, R,0,pP]

i = R [n]